Convergence of self-avoiding random walk to Brownian motion in high dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L417
(http://iopscience.iop.org/0305-4470/21/7/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 14:39

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Convergence of self-avoiding random walk to Brownian motion in high dimensions

Gordon Slade
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

Received 22 December 1987

Abstract

It is proved that, in sufficiently high dimensions, the scaled self-avoiding random walk on the hypercubic lattice converges in distribution to Brownian motion. Convergence of the finite-dimensional distributions was shown elsewhere. Here tightness is shown.

A T-step self-avoiding random walk ω on the d-dimensional hypercubic lattice \mathbb{Z}^{d} is a sequence $\omega=(\omega(0)=0, \omega(1), \ldots, \omega(T))$ with $\omega(i) \in \mathbb{Z}^{d},|\omega(i+1)-\omega(i)|=1$ and $\omega(i) \neq \omega(j)$ for $i \neq j$. Equal probability is assigned to each T-step self-avoiding walk.

This model was first introduced by chemists as a model of polymer molecules and has since been studied by physicists as an interesting model of critical phenomena. It is also of interest to probabilitists as a natural example of a non-Markovian process. In terms of rigorous results, very little has been proved about the critical behaviour of the self-avoiding walk in low dimensions. Recently, however, progress has been made with rigorous results in high dimensions, using the lace expansion, which was developed and used in [1] to analyse the weakly self-avoiding walk in five or more dimensions. In [2] the lace expansion was used to show that there is a $d_{0} \geqslant 5$ such that for $d \geqslant d_{0}$ the mean-squared displacement R_{T}^{2} of the T-step step-avoiding walk is asymptotically of the form

$$
\begin{equation*}
R_{T}^{2} \sim D T \tag{1}
\end{equation*}
$$

as T approaches infinity, for some constant $D>1$. In [3] the lace expansion was used to show that, for $d \geqslant d_{0}$, the number c_{T} of T-step self-avoiding walks is asymptotically given by

$$
\begin{equation*}
c_{T} \sim \text { constant } \times \beta^{T} \tag{2}
\end{equation*}
$$

where β is the inverse of the radius of convergence of

$$
G(z)=\sum_{T=0}^{\infty} c_{T} z^{T}
$$

Also, in [4], the infinite self-avoiding walk was constructed using the lace expansion.
There is at present no good rigorous estimate for the value of d_{0}, but (1) and (2) are expected to hold for $d \geqslant 5$. For $d=4$ logarithmic corrections to (1) and (2) are expected, while for $d=2$ and $d=3$ it is expected that $R_{T}^{2} \sim$ constant $\times T^{2 \nu}$ and $c_{T} \sim$ constant $\times T^{\gamma-1} \beta^{T}$, with $\nu=\nu(d)>\frac{1}{2}$ and $\gamma=\gamma(d)>1$. The critical exponents ν and γ have been heuristically and/or numerically computed in all dimensions, but a proof that they have their expected values is lacking for $d<d_{0}$.

It was also shown in [3], using a variation of the lace expansion, that for $d \geqslant d_{0}$ the finite-dimensional distributions of $X_{n}(t)$, defined by

$$
\begin{equation*}
X_{n}(t)=n^{-1 / 2} \omega([n t]) \tag{3}
\end{equation*}
$$

converge weakly to those of Brownian motion as n approaches infinity. In other words, the expected value of $f\left(X_{n}\left(t_{1}\right), X_{n}\left(t_{2}\right), \ldots, X_{n}\left(t_{N}\right)\right)$ converges as n approaches infinity to the corresponding Brownian motion expectation, for any $N \geqslant 1$, any bounded continuous function f and any fixed $t_{1}, \ldots, t_{N} \in[0,1]$. The normalisation $n^{-1 / 2}$ in (3) is the same as the normalisation used in proving that simple random walk (without any self-avoidance constraint) converges in distribution to Brownian motion and is a reflection of the fact that, in high dimensions, self-avoiding walk and simple random walk have essentially the same critical behaviour.

Denote the linear interpolation of X_{n} by $\tilde{X}_{n}(t)$. In this letter we prove the following theorem.

Theorem 1. For $d \geqslant d_{0}, \tilde{X}_{n}$ converges in distribution to Brownian motion as n approaches infinity.

Equivalently, the expected value with respect to the scaled self-avoiding walk of any bounded continuous function on $C_{d}[0,1]$ (the \mathbb{R}^{d}-valued continuous functions on the interval $[0,1]$) converges to the corresponding Brownian motion expectation. This is a stronger result than convergence of the finite-dimensional distributions, since, for example, theorem 1 implies that $\max \left\{\left|\tilde{X}_{n}(t)\right|: 0 \leqslant t \leqslant 1\right\}$ (which does not depend on only finitely many times t_{1}, \ldots, t_{N}) converges in distribution to $\max \left\{\left|B_{t}\right|: 0 \leqslant t \leqslant 1\right\}$ as n approaches infinity. Here we consider the Brownian motion to be normalised such that $\left\langle\exp \left(i k \cdot B_{t}\right)\right\rangle=\exp \left(-D k^{2} t / 2 d\right)$.

Similar results have been obtained by Lawler [5] for the loop-erased self-avoiding walk (which is the Laplacian random walk with $\eta=1$ [6]) in four or more dimensions. Lower bounds on the mean-squared displacement critical exponent for the loop-erased walk in two and three dimensions have also been obtained [7].

To prove theorem 1 it suffices to show that the finite-dimensional distributions of $\tilde{X}_{n}(t)$ converge weakly to those of B_{t} and that $\left\{\tilde{X}_{n}\right\}$ is tight [8]. Since $\left|\tilde{X}_{n}(t)-X_{n}(t)\right| \leqslant$ $n^{-1 / 2}$, convergence of the finite-dimensional distributions of \tilde{X}_{n} to those of Brownian motion follows from the convergence of the finite-dimensional distributions of X_{n} proved in [3]. Thus to prove theorem 1 it suffices to show that $\left\{\tilde{X}_{n}\right\}$ is tight. Tightness is a technical condition which amounts to a guarantee that very long excursions by the walk occur with low probability, or more precisely that for each positive ε and η there is a $\delta \in(0,1)$ and an integer n_{0} such that if $n \geqslant n_{0}$ then

$$
\operatorname{Prob}\left\{\max _{|s-t|<\delta}\left|X_{n}(t)-X_{n}(s)\right| \geqslant \varepsilon\right\} \leqslant \eta
$$

The need for some condition such as tightness can be seen from the following example, which is taken from [8]. Define $x_{n} \in C_{1}[0,1]$ by

$$
x_{n}(t)=\left\{\begin{array}{lll}
n t & \text { if } & 0 \leqslant t \leqslant n^{-1} \\
2-n t & \text { if } & n^{-1} \leqslant t \leqslant 2 n^{-1} \\
0 & \text { if } & 2 n^{-1} \leqslant t \leqslant 1
\end{array}\right.
$$

and let P_{n} be the unit mass measure (or delta function) at x_{n}. Then the finite-dimensional distributions of P_{n} converge to those of the unit mass measure at the zero function,
but P_{n} does not converge in distribution to the unit mass at zero since the expected value of $\max \{x(t): 0 \leqslant t \leqslant 1\}$ with respect to P_{n} is one, for all n.

Tightness is proved via the following lemma. Angular brackets denote expectation with respect to the uniform measure on n-step self-avoiding walks.

Lemma 1. The sequence $\left\{\tilde{X}_{n}\right\}$ is tight if there exist constants $A \geqslant 0$, and $\alpha>\frac{1}{2}$, such that for $0 \leqslant t_{1}<t_{2}<t_{3} \leqslant 1$, and for all n,

$$
\begin{equation*}
\left.\langle | X_{n}\left(t_{2}\right)-\left.X_{n}\left(t_{1}\right)\right|^{2 \alpha}\left|X_{n}\left(t_{3}\right)-X_{n}\left(t_{2}\right)\right|^{2 \alpha}\right\rangle \leqslant A\left|t_{2}-t_{1}\right|^{\alpha}\left|t_{3}-t_{2}\right|^{\alpha} \tag{4}
\end{equation*}
$$

This lemma, although not stated explicitly in [8], follows in a straightforward manner from results in [8, pp 87-9]. Next we show how (1), (2) and subadditivity can be used to give a simple proof that (4) is satisfied, with $\alpha=1$, for the self-avoiding walk with $d \geqslant d_{0}$.

Here we prove that, for $d \geqslant d_{0}$, (4) is satisfied with $\alpha=1$, and hence by lemma 1 $\left\{\tilde{X}_{n}\right\}$ is tight and theorem 1 is proved. The assumption that $d \geqslant d_{0}$ enters the proof in the use of (1) and (2). We begin by introducing some notation. For positive integers $a<b$ we define $\mathscr{B}[a, b]$ to be the set of all pairs of integers (s, t) with $a \leqslant s<t \leqslant b$:

$$
\begin{equation*}
\mathscr{B}[a, b]=\{(s, t): a \leqslant s<t \leqslant b ; s, t \in \mathbb{Z}\} . \tag{5}
\end{equation*}
$$

Elements of $\mathscr{B}[a, b]$ are called bonds. Let

$$
U_{s, 1}(\omega)=\left\{\begin{align*}
-1 & \omega(s)=\omega(t) \tag{6}\\
0 & \omega(s) \neq \omega(t)
\end{align*}\right.
$$

Define

$$
\begin{equation*}
K[a, b]=\prod_{(s, t) \in \mathfrak{B}[a, b]}\left(1+U_{s, t}(\omega)\right) . \tag{7}
\end{equation*}
$$

Then $K[a, b]$ is equal to 1 for a walk which is self-avoiding and is equal to 0 for a walk which intersects itself, and hence the left-hand side of (4), with $\alpha=1$, can be written as

$$
\begin{align*}
& \left.\langle | X_{n}\left(t_{2}\right)-\left.X_{n}\left(t_{1}\right)\right|^{2}\left|X_{n}\left(t_{3}\right)-X_{n}\left(t_{2}\right)\right|^{2}\right\rangle \\
& \quad=n^{-2} c_{n}^{-1} \sum_{|\omega|=n}\left|\omega\left(n t_{2}\right)-\omega\left(n t_{1}\right)\right|^{2}\left|\omega\left(n t_{3}\right)-\omega\left(n t_{2}\right)\right|^{2} K[0, n] \tag{8}
\end{align*}
$$

where the sum is over all n-step simple random walks.
Now subadditivity can be expressed by the inequality

$$
\begin{equation*}
K[a, b] \leqslant K[a, c] K[c, b] \tag{9}
\end{equation*}
$$

where c is any integer such that $a \leqslant c \leqslant b$. The inequality (9) follows from the fact that $1+U_{s, t}(\omega) \leqslant 1$, so omitting bonds (s, t) in (7) with $s<c<t$ gives an upper bound. We use subadditivity in the form

$$
\begin{equation*}
K[0, n] \leqslant K\left[0, n t_{1}\right] K\left[n t_{1}, n t_{2}\right] K\left[n t_{2}, n t_{3}\right] K\left[n t_{3}, n\right] \tag{10}
\end{equation*}
$$

in (8). This allows the sum over ω to be replaced by a sum over independent subwalks on the time intervals $\left[0, n t_{1}\right],\left[n t_{1}, n t_{2}\right],\left[n t_{2}, n t_{3}\right]$ and $\left[n t_{3}, n\right]$. Also, by (2),

$$
\begin{equation*}
c_{n}^{-1} \leqslant \text { constant } \times c_{n t_{1}}^{-1} c_{n t_{2}-n t_{1}}^{-1} c_{n t_{3}-n t_{2}}^{-1} c_{n-n t_{3}}^{-1} . \tag{11}
\end{equation*}
$$

When (10) and (11) are substituted in (8), the sum over the subwalk on the interval [$0, n t_{1}$] is cancelled by the factor $c_{n t_{1}}^{-1}$ on the right-hand side of (11) and the sum over the subwalk on the interval $\left[n t_{3}, n\right]$ is cancelled by $c_{n-n t_{3}}^{-1}$. This yields the estimate

$$
\begin{align*}
& \left.\langle | X_{n}\left(t_{2}\right)-\left.X_{n}\left(t_{1}\right)\right|^{2}\left|X_{n}\left(t_{3}\right)-X_{n}\left(t_{2}\right)\right|^{2}\right\rangle \\
& \leqslant \\
& \leqslant A_{1} n^{-2} c_{n t_{2}-n t_{1}}^{-1} \sum_{|\omega|=n t_{2}-n t_{1}}\left|\omega\left(n t_{2}-n t_{1}\right)\right|^{2} K\left[0, n t_{2}-n t_{1}\right] \\
& \quad \times c_{n t_{3}-n t_{2}}^{-1} \sum_{|\omega|=n t_{3}-n t_{2}}\left|\omega\left(n t_{3}-n t_{2}\right)\right|^{2} K\left[0, n t_{3}-n t_{2}\right] \tag{12}\\
& \left.\left.\quad=\left.A_{1} n^{-2}\langle | \omega\left(n t_{2}-n t_{1}\right)\right|^{2}\right\rangle\left.\langle | \omega\left(n t_{3}-n t_{2}\right)\right|^{2}\right\rangle
\end{align*}
$$

where the expectations on the rigit-hand side are with respect to $n t_{2}-n t_{1}$ and $n t_{3}-n t_{2}$ step walks, respectively, and A_{1} is a constant. By (1) these expectations are bounded above by a constant multipled by $n t_{2}-n t_{1}$ and $n t_{3}-n t_{2}$, which upon substitution in (12) gives (4) with $\alpha=1$.

I would like to thank David Brydges for many conversations about self-avoiding random walk. This work was supported by the Natural Sciences and Engineering Research Council grant no A9351.

References

[1] Brydges D and Spencer T 1985 Commun. Math. Phys. 97 125-48
[2] Slade G 1987 Commun. Math. Phys. 110 661-83
[3] Slade G 1987 The scaling limit of self-avoiding random walk in high dimensions. Preprint
[4] Lawler G 1987 The infinite self-avoiding walk in high dimensions. Preprint
[5] Lawler G 1980 Duke Math. J. 47 655-93; 1986 Duke Math. J. 53 249-69
[6] Lawler G 1987 J. Phys. A: Math. Gen. 20 4565-8
[7] Lawler G 1987 Loop-erased self-avoiding random walk in two and three dimensions. Preprint
[8] Billingsley P 1968 Convergence of Probability Measures (New York: Wiley)

