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LETTER TO THE EDITOR 

Convergence of self-avoiding random walk to Brownian motion 
in high dimensions 

Gordon Slade 
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, 
Canada L8S 4K1 

Received 22 December 1987 

Abstract. It is proved that, in sufficiently high dimensions, the scaled self-avoiding random 
walk on the hypercubic lattice converges in distribution to Brownian motion. Convergence 
of the finite-dimensional distributions was shown elsewhere. Here tightness is shown. 

A T-step self-avoiding random walk w on the d-dimensional hypercubic lattice Z d  is 
a sequence w = ( w ( O )  =0, w(l) ,  . . . , w ( T ) )  with w ( i ) E Z d ,  I w ( i + l ) - - w ( i ) l =  1 and 
w ( i )  # w ( j )  for i Zj. Equal probability is assigned to each T-step self-avoiding walk. 

This model was first introduced by chemists as a model of polymer molecules and 
has since been studied by physicists as an interesting model of critical phenomena. It 
is also of interest to probabilitists as a natural example of a non-Markovian process. 
In terms of rigorous results, very little has been proved about the critical behaviour 
of the self-avoiding walk in low dimensions. Recently, however, progress has been 
made with rigorous results in high dimensions, using the lace expansion, which was 
developed and used in [ l ]  to analyse the weakly self-avoiding walk in five or more 
dimensions. In [2] the lace expansion was used to show that there is a do>5  such 
that for d 2 do the mean-squared displacement R: of the T-step step-avoiding walk 
is asymptotically of the form 

R:-  DT (1) 

as T approaches infinity, for some constant D >  1. In [3] the lace expansion was used 
to show that, for d 2 do, the number cT of T-step self-avoiding walks is asymptotically 
given by 

(2) cT - constant x p 
where p is the inverse of the radius of convergence of 

cc 
T 

G ( Z ) =  CTZ . 
T = O  

Also, in [4], the infinite self-avoiding walk was constructed using the lace expansion. 
There is at present no good rigorous estimate for the value of do, but (1) and (2) 

are expected to hold for d 2 5. For d = 4 logarithmic corrections to ( 1 )  and (2) are 
expected, while for d = 2 and d = 3 it is expected that R:- constant x T2” and cT - 
constant x T y - ’ p T ,  with v = v ( d )  > f and y = y ( d ) >  1. The critical exponents v and 
y have been heuristically and/or numerically computed in all dimensions, but a proof 
that they have their expected values is lacking for d < do. 
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It was also shown in [3], using a variation of the lace expansion, that for d 2 do 
the finite-dimensional distributions of X , (  I ) ,  defined by 

X , , ( t )  = n-”2b([nf])  (3) 

converge weakly to those of Brownian motion as n approaches infinity. In other words, 
the expected value off(X,,(r,),  X, , ( t2 ) ,  . . . , X , , ( f N ) )  converges as n approaches infinity 
to the corresponding Brownian motion expectation, for any N >  1, any bounded 
continuous functionf and any fixed t , ,  . . . , f N  E [0, 11. The normalisation n-Ii2 in (3) 
is the same as the normalisation used in proving that simple random walk (without 
any self-avoidance constraint) converges in distribution to Brownian motion and  is a 
reflection of the fact that, in high dimensions, self-avoiding walk and simple random 
walk have essentially the same critical behaviour. 

Denote the linear interpolation of X,, by z,,(f). In this letter we prove the following 
theorem. 

Theorem 1. 
approaches infinity. 

For d a d , ,  z,, converges in distribution to Brownian motion as n 

Equivalently, the expected value with respect to the scaled self-avoiding walk of any 
bounded continuous function on Cd[O, 11 (the Rd-valued continuous functions on the 
interval [0, 11) converges to the corresponding Brownian motion expectation. This is 
a stronger result than convergence of the finite-dimensional distributions, since, for 
example, theorem 1 implies that max{lg,,(t)l: O s  t s 1) (which does not depend on 
only finitely many times t , ,  . . . , r N )  converges in distribution to max{lB,I: O S  f s  l }  as 
n approaches infinity. Here we consider the Brownian motion to be normalised such 
that (exp(ik3 B , ) )  = exp(-Dk2t/2d).  

Similar results have been obtained by Lawler [ 51 for the loop-erased self-avoiding 
walk (which is the Laplacian random walk with 77 = 1 [6]) in four or more dimensions. 
Lower bounds on the mean-squared displacement critical exponent for the loop-erased 
walk in two and three dimensions have also been obtained [7]. 

To prove theorem 1 it suffices to show that the finite-dimensional distributions of 
g,,(t) converge weakly to those of B, and that {g,} is tight [8]. Since lg,,(t) -X,( t ) l  s 

, convergence of the finite-dimensional distributions of 2, to those of Brownian n - l / 2  

motion follows from the convergence of the finite-dimensional distributions of X, 
proved in [3]. Thus to prove theorem 1 it suffices to show that {Z,,} is tight. Tightness 
is a technical condition which amounts to a guarantee that very long excursions by 
the walk occur with low probability, or more precisely that for each positive E and 77 
there is a 6 E (0, 1) and an  integer no such that if n 2 n, then 

The need for some condition such as tightness can be seen from the following 

if o s  t s n-1 
example, which is taken from [8]. Define x,, E C,[O, 11 by 

x , ( t ) =  2 - n t  if n - ‘ s t < 2 n - ’  [r if 2 n - I ~  ts 1 

and let P,, be the unit mass measure (or delta function) at x,. Then the finite-dimensional 
distributions of P, converge to those of the unit mass measure at the zero function, 
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but P,, does not converge in distribution to the unit mass at zero since the expected 
value of max{x(t): 0 s  t 

Tightness is proved via the following lemma. Angular brackets denote expectation 
with respect to the uniform measure on n-step self-avoiding walks. 

1) with respect to P,, is one, for all n. 

Lemma 1. The sequence {z,,} is tight if there exist constants A Z O ,  and a>+, such 
that for O S  t ,  < t2 < t3 s 1, and for all n, 

This lemma, although not stated explicitly in [8], follows in a straightforward 
manner from results in [8, pp 87-91. Next we show how ( l ) ,  ( 2 )  and subadditivity 
can be used to give a simple proof that (4) is satisfied, with a = 1, for the self-avoiding 
walk with d 3 do. 

Here we prove that, for d 2 do, (4) is satisfied with a = 1, and hence by lemma 1 {zn} is tight and theorem 1 is proved. The assumption that d do enters the proof in 
the use of (1) and ( 2 ) .  We begin by introducing some notation. For positive integers 
a < b we define 9 [ a ,  b] to be the set of all pairs of integers (s, t )  with a s s < t S b: 

9 [ a , b ] = { ( s , t ) :  a s s < t s b ; s , t E Z } .  ( 5 )  

Elements of B[a, b] are called bonds. Let 

Define 

Then K [ a ,  b] is equal to 1 for a walk which is self-avoiding and is equal to 0 for a 
walk which intersects itself, and hence the left-hand side of (4), with a = 1, can be 
written as 

( I  Xn ( f 2 )  - xn ( t l )  I 2 I  xn ( t 3 )  - Xn ( t 2 )  I*) 
n - 2  - 1  

(8) c n  c Iw(n t * )  - 4ntl)1214nt3) - 4nt*)12K[0, n l  - - 
I w / = f l  

where the sum is over all n-step simple random walks. 
Now subadditivity can be expressed by the inequality 

K [ a ,  b ] ~  K [ a ,  c ] K [ c ,  b] (9) 

where c is any integer such that a s c G b. The inequality (9) follows from the fact 
that 1 + U s , l ( w )  =s 1, so omitting bonds (s, t )  in (7) with s < c < t gives an upper bound. 
We use subadditivity in the form 

K[O, n ] ~  K [ O ,  n t , ] K [ n t , ,  n t z ] K [ n t , ,  n t , ] k ( [ n t , ,  n] (10) 

in (8). This allows the sum over o to be replaced by a sum over independent subwalks 
on the time intervals [0, nt,], [ n t , ,  n t , ] ,  [nr2, nt , ]  and [ n t , ,  n]. Also, by (2),  

(11) 
- 1  - I  - 1  c, s constant x c ~ , ~ c ~ ~ ~ - ~ ~ , c ~ ~ ~ - ~ ~ ~ c ~ - ~ ~ ~ .  
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When (10) and (1 1) are substituted in (8), the sum over the subwalk on the interval 
[ O ,  n t , ]  is cancelled by the factor til: on the right-hand side of (11) and the sum over 
the subwalk on the interval [ n t , ,  n ]  is cancelled by c;lnl3. This yields the estimate 

(IXn ( t z )  - Xn ( 1, ) 121 Xn( 1 3 )  - xn ( t 2 )  I ’> 
sA1n-’ci&, 1 ( w ( n t 2 -  nt,)(’K[O, nt , -  nt,] 

! w / = n t 2 - n r ,  

-- 1 x C n l 3 - - n t ,  Iw(nt,- nt,)12K[0, nt ,  - nt, ]  
!wl=  nr3 -n t2  

= A , ~ ~ - ~ ( l w ( n t z -  ntl)lz)(lw(nt3- nt2)l’) (12) 

where the expectations on the right-hand side are with respect to nt,  - nt ,  and nt, - n t ,  
step walks, respectively, and A, is a constant. i3y (1) these expectations are bounded 
above by a constant multipled by n t ,  - n t ,  and nt3 - nt , ,  which upon substitution in 
(12) gives (4) with LU = 1. 

I would like to thank David Brydges for many conversations about self-avoiding 
random walk. This work was supported by the Natural Sciences and Engineering 
Research Council grant no A935 1. 
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